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Abstract
The snap bean is a vegetable of great worldwide economic importance. However, tropical soils have low amounts of nutrients,
especially boron, a micronutrient essential for plant nutrition. The objective of this work is to verify the effects of foliar application of
boron on the growth, physiology, nutrition, and productivity of snap beans. The experiment was carried out in a greenhouse in a
completely randomized design, with five treatments comprising boron doses (0 – control, 1350, 2700, 4050, and 5400 ppm) and
four replicates. Foliar application of boron was carried out at the V3 vegetative stage (third mature trifoliate). Growth, physiological,
nutritional, and productivity variables were evaluated at the reproductive stages R5 (flowering) and R8 (harvest). Data were
subjected to analysis of variance and F test at a 5% significance level. When significant, data was submitted to Student t, Scott-
Knott, and regression analysis. Doses above than 2700 ppm affected significantly foliar temperature, transpiration, stomatal
conductance, photosynthesis, and internal carbon concentration of bean pods. Foliar fertilization with boron influenced significantly
the content and accumulation of boron in the shoot (868%) and the root system (105%), but it did not change the contents in pods.
However, although they affect the physiology of snap bean plants, the tested doses did not influence significantly the growth
variables and productivity. Boron doses from 2700 ppm caused symptoms of phytotoxicity on snap bean crops. Therefore, we do
not recommend foliar application of boron at the stage V3 in snap bean crops even with a low boron content in the soil.

Keywords Phaseolus vulgaris . Plant nutrition .Micronutrient . Nutrition efficiency . Physiology

1 Introduction

The snap bean (Phaseolus vulgaris L.) is a horticultural le-
gume with a global economic importance. Its center of origin
is the Americas (Vaz et al. 2017). It has a high profitability due
to its short cycle and its high productivity. There is a high
demand in the international market (Seif et al. 2016).

Tropical soils have a low natural fertility and are poor in
organic matter. They are deficient in some micronutrients,
which may limit the productivity of crops (Gomes et al.

2017). Currently, several researchers have been studying the
application of micronutrients, among them boron, seeking to
increase productivity and production quality. Boron plays a
key role in the metabolism of plants, including the formation
and stability of the cell wall, which maintains the integrity of
membranes, sugar and energy drive, pollination, pod fixation,
and increased grain yield per plant, resulting in improvements
in productivity (Flores et al. 2017; Santos et al. 2019).

In the soil, the availability of boron is conditioned to the pH
and the organic matter content. Therefore, it is not always pres-
ent in necessary quantities for the growth of plants. The foliar
application is an alternative to improve its use by crops. In this
context, the application of foliar fertilizers with micronutrients
has increased in recent years due to the need to seek high crop
yields (Nakao et al. 2018). However, due to the low mobility of
B in plant tissues, foliar fertilization may be an obstacle to plant
nutrition (Mantovani et al. 2013), thus requiring studies to ver-
ify whether it is a viable practice. The lack of consistent results
on boron foliar application leads to discussions about the via-
bility of this technique (Santos et al. 2019).
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Thus, further studies are needed on the management of
fertilizers containing micronutrients, especially boron, due to
its narrow range between the critical level of deficiency and
the excess (Flores et al. 2018). Further studies are needed
especially on snap beans, for there is no research on the sub-
ject. Thus, this study aims to verify the effects of foliar appli-
cation of boron on growth, physiology, nutrition, and produc-
tivity of snap beans.

2 Material and Methods

2.1 Site Description and Soil

The experiment was carried out in a greenhouse at the Federal
University of Goiás, Campus Samambaia, in the city of Goiânia,
GO, Brazil (16°35′46.2″ S and 49°16′47.1″ W, approximately
730 m above sea level). The climate is Aw, with dry winters and
rainy summers, according to the Köppen classification.

The soil was collected at the superficial layer (0–20 cm). It
is a Rhodic Hapludox (Taxonomy 2006). It was deformed,
homogenized, passed through a 4-mm sieve, and placed in a
pot filled with 14 kg of soil. Prior to the installation of the
experiment, the soil presented the following chemical and
physical parameters: pH-CaCl2 = 5.0, Ca = 3.1 cmolc dm

−3,
Mg = 1.1 cmolc dm−3 , Al = 0.1 cmolc dm−3 , P =
2.1 mg dm−3, K = 20 mg dm−3, H + Al = 2.3 mg dm−3, Cu =
2.9 mg dm−3, Fe = 86 mg dm−3, Mn = 27 mg dm−3, Zn =
0.7 mg dm−3, B = 0.251 mg dm−3, cation exchange capacity =
6.8 cmolc dm

−3, base saturation = 65.9%, organic material =
14.0 g kg−1, and clay = 320 g kg−1.

2.2 Experimental Design

We used a completely randomized design with five treatments
and four replications. The treatments consisted of five doses of
boron (0 – control, 1350, 2700, 4050, and 5400 ppm) applied
via foliar at the V3 vegetative stage (third mature trifoliate).

The planting was carried out on March 26, with four seeds
per pot. At the same time, fertilization was carried out with
30 kg ha−1 of N, 90 kg ha−1 of P2O5, and 40 kg ha−1 of K2O,
using urea (45% N), triple superphosphate (46% P2O5), and
potassium chloride (60% K2O), respectively, as fertilizers
(Souza and Lobato 2004). The cultivar used was the
“Celtic,” with a prostrate growth habit, a good uniformity of
pods, dark green color, and of a noodle type.

Seedling thinning was performed 7 days after emergence,
leaving two plants per pot. At the V3 vegetative stage (third
mature trifoliate), the fertilization was performed with
30 kg ha−1 of N using urea as fertilizer (Souza and Lobato
2004). At V3, foliar application of boron was also performed
using as source borax (11% boron). Borax was used due to its
higher water solubility compared to boric acid. It was

performed by single application in the morning using a spray-
er. During the application of foliar fertilization, the pots were
covered with a plastic film to prevent contact of the product
with the pots.

2.3 Plant Analysis

At R5 stage (flowering), growth parameters were measured,
such as height, collection diameter, number of triphols (com-
posite leaf with three leaflets), number of flowers, and leaf
area. The leaf area was estimated by the nondestructive
method proposed by Queiroga et al. (2003) using Eq. 1:

Leaf area ¼ 0:1026 x width1:6871 ð1Þ

The physiological parameters (leaf temperature, pho-
tosynthesis, transpiration, stomatal conductance, internal
CO2 concentration) were measured using the infrared
gas analyzer (IRGA, Li-COR, Lincoln, USA) and the
ch l o r ophy l l c on t e n t by a ch l o r ophy l l me t e r
(FALKER®, ClorofiLOG CFL 1030). Subsequently, a
plant was removed per pot and washed to remove de-
bris and then sent for drying in a closed air circulation
oven at 60 °C for 72 h to obtain the dry mass of
shoots. The plant tissue sample was incinerated in an
electric muffle at a temperature between 500 and
550 °C. The resulting ash was dissolved in dilute acidic
nitric solution. The determination of boron was based
on the formation of a yellow-colored complex resulting
from the reaction of boric acid with azomethine-H re-
agent and determined spectrometrically in blue filter
readings at 420 nm (Silva 2009).

The harvest of the pods was performed during the
stage R8 (harvest point – pods around 8 cm), when
the pods reached a commercial size. The growth,

Table 1 Height, diameter, number of triphols (composite leaf with three
leaflets), and leaf area in the absence and presence of leaf fertilizationwith
boron in snap bean crops at the stages R5 (flowering) and R8 (harvest)

Boron Height (cm) Diameter (mm) N° triphols Leaf area (cm2)

Stage R5

Absence 37.25 ± 3.24 4.45 ± 0.18 4.75 ± 0.48 5.19 ± 0.91

Presence 37.00 ± 1.25 4.29 ± 0.17 3.75 ± 0.67 4.34 ± 0.94

F 0.94ns 0.35ns 0.11ns 0.38ns

CV 14.97 10.63 30.13 44.2

Stage R8

Absence 36.50 ± 2.10 5.33 ± 0.15 6.25 ± 0.28 24.97 ± 2.29

Presence 36.12 ± 1.47 5.09 ± 0.18 6.87 ± 0.40 20.22 ± 2.51

F 0.87ns 0.49ns 0.48ns 0.30ns

CV 14.45 7.48 31.13 29.55

**significant at 5% of probability by the t test; ns not significant at 5%
probability by the t test; CV coefficient of variation (%)
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physiological, and nutritional analyses described above
were carried out, plus analysis of productivity variables:
number of pods per plant, pod size, pod diameter, green
mass, and dry pod mass. The boron use efficiency was
calculated by Eq. 2, as described by Siddiqi and Glass
(1981):

BUE ¼ TDMð Þ2=TAB ð2Þ

where BUE is the boron use efficiency, TDM is the total
dry mass produced by the plant, and TAB is the total accumu-
lation of boron in the plant.

2.4 Statistical Analysis

The data were submitted to analysis of variance and F test
at 5% of significance using the R software. A t test was
performed to compare the absence and presence of boron
foliar fertilization, and the Scott-Knott test was used to
verify differences between doses and the control. When
significant, the polynomial regression analysis was per-
formed (5% of significance).

3 Results

Foliar fertilization with boron did not have statistical
differences (5% of significance) in relation to the
growth of bean pods, according to Table 1. However,
it is possible to observe that for doses above 2700 ppm,
there is a reduction in the values of the variables, show-
ing a possible effect of toxicity. According to Table 2,
boron doses did not influence chlorophyll content, leaf
area, and dry weight of shoots in snap bean plants,
showing that there was no influence on the accumula-
tion of biomass.

Table 3 shows significant differences (5% of signifi-
cance) among physiological variables in function of bo-
ron doses. In relation to the internal carbon concentra-
tion (Ci), at the R5 stage, there was a linear reduction
of 29% of the Ci (Fig. 1a) and a quadratic adjustment
with a minimum of 2100 ppm at the R8 stage (Fig. 1b).

Table 2 Chlorophyll, shoot dry mass (SDM), and root dry mass (RDM)
in the absence and presence of leaf fertilization with boron in snap bean
crops at the stages R5 (flowering) and R8 (harvest)

Boron Chlorophyll (μg cm−2) SDM (g) RDM (g)

Stage R5

Absence 18.17 ± 3.26 1.64 ± 0.23 0.62 ± 0.15

Presence 18.18 ± 0.89 1.55 ± 0.15 0.61 ± 0.14

T 0.99ns 0.55ns 0.76ns

CV 23.37 10.16 6.68

Stage R8

Absence 21.45 ± 2.29 3.77 ± 0.18 1.16 ± 0.10

Presence 21.65 ± 1.81 3.72 ± 0.11 1.19 ± 0.12

F 0.96ns 0.89ns 0.85ns

CV 21.56 20.31 40.43

**significant at 5% of probability by F test; ns not significant at 5%
probability by F test; CV coefficient of variation (%)

Table 3 Foliar temperature (T),
concentration internal of CO2

(Ci), transpiration (E), stomatal
conductance (Gs), and
photosynthesis (A) with different
doses of leaf fertilization with
boron in snap bean crops at the
stages R5 (flowering) and R8
(harvest)

Dose

(ppm)

T

°C

Ci

(mmol m−2 s−1)

E

(mmol H2O m−2 s−1)

Gs

(molm−2 s−1)

A

(μmolm−2 s−1)

Stage R5

0 40.1 ± 0.23 252.6 ± 5.00 2.7 ± 0.25 0.22 ± 0.02 15.1 ± 1.82

1350 40.7 ± 0.02 228.5 ± 16.22 3.2 ± 0.13 0.25 ± 0.02 19.7 ± 0.60

2700 40.9 ± 0.11 237.7 ± 6.58 3.5 ± 0.29 0.28 ± 0.01 19.8 ± 1.11

4050 40.1 ± 0.13 177.3 ± 23.07 2.5 ± 0.25 0.19 ± 0.02 20.5 ± 2.63

5400 40.8 ± 0.11 186.9 ± 15.01 2.3 ± 0.97 0.42 ± 0.20 21.3 ± 0.93

F 7.17** 5.12** 1.34ns 1.17ns 2.34ns

CV 0.71 13.39 29.4 59.27 16.34

Stage R8

0 27.6 ± 0.03 199.5 ± 7.46 1.43 ± 0.12 0.24 ± 0.03 20.6 ± 1.32

1350 28.2 ± 0.14 80.7 ± 31.05 1.23 ± 0.14 0.17 ± 0.04 24.1 ± 1.76

2700 28.5 ± 0.12 93.3 ± 16.58 0.53 ± 0.07 0.05 ± 0.01 13.8 ± 1.67

4050 29.9 ± 0.14 214.1 ± 33.75 1.85 ± 0.06 0.23 ± 0.02 17.8 ± 3.52

5400 30.4 ± 0.02 222.6 ± 16.45 1.79 ± 0.13 0.18 ± 0.02 16.1 ± 2.35

F 12.54** 8.45** 26.27** 9.63** 3.10**

CV 0.73 29.35 15.53 28.46 24.58

**significant at 5% of probability by the Scott-Knott test; ns not significant at 5% probability by the Scott-Knott
test; CV coefficient of variation (%)
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Leaf temperature, transpiration, and stomatal conductance
were significant only at the R8 stage. Regarding leaf temper-
ature (Fig. 2a) (at the R8 stage, there was a linear increase of
this variable with the increase of boron doses) and stomatal
conductance (Fig. 2b), they showed a quadratic fitting of re-
gression, with a reduction of the means of the variables up to
the dose 2.10 kg ha−1. For photosynthesis (Fig. 2c), there was
an opposite behavior. Doses up to 3.29 kg ha−1 promoted an
increase in the photosynthetic rate of snap beans.

In relation to the content and accumulation of boron
in the plant, it is possible to observe a significant dif-
ference (5% of significance) in the shoots of snap beans
at the R5 stage, in which it promoted increases of
1032% and 868% when comparing the 5400-ppm dose
with 0 ppm, respectively (Table 4).

The content of B in shoots showed a linear behavior in
function of the applied dose (Fig. 3a), with a greater accumu-
lation at the dose 4198 ppm (Fig. 3b). However, in the analysis
performed at the R8 stage, only the roots had a significant
result, with a maximum B content of 3915 ppm (Fig. 4). In

snap beans, boron accumulation is mainly concentrated in
shoots (58%), followed by pods (22%) and roots (20%).

Foliar fertilization with boron did not affect significantly
(5% of significance) the productive characteristics of bean
pods, according to Table 5, which shows that the application
performed at the V3 stage is incapable of promoting an in-
creased crop productivity.

The leaf application of boron promoted visual symptoms of
toxicity in bean leaves mainly at doses above 2700 ppm.
There were chlorotic spots followed by necrosis on old leaves,
as shown in Fig. 5.

4 Discussion

Although the concentration of boron in the soil was
considered low, it was enough to supply the necessary
amount for an adequate development of plants, even in
the treatment without fertilization (Çelik et al. 2019).
The nonsignificant effect of borated foliar fertilization

Fig. 1 Internal concentration of
CO2 at R5 (flowering) (a) and R8
stages (harvest) (b) in function of
boron doses in snap bean plants.
*Significant at 5% of probability

Fig. 2 Leaf temperature (a),
transpiration (b), and stomatal
conductance (c) at the stage R8
(harvest) in function of boron
doses in snap bean plants.
*Significant at 5% of probability
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on plant growth corroborates the results found by Nakao
et al. (2018) and Gomes et al. (2017), according to
which plant height and stem diameter were not
affected by doses of boron in soybean. However, it
differs from that found by Pawlowski et al. (2019) for
soybean. The authors found an increase in the height of
plants according to the dose of B applied.

Increases in growth rate with foliar application over the
basal dose were due to an improved physiological efficiency
that played a significant role in increasing crop productivity
(Mondal et al. 2012). However, boron toxicity can be an ob-
stacle for a longitudinal growth of roots; toxicity can decrease
cell division and root growth because excessive amounts cre-
ate disorders in the process of cell wall development (Rostami
et al. 2017).

Regarding the physiology of snap bean plants, the applica-
tion of boron did not affect the relative chlorophyll content,

which is strongly correlated with nitrogen content. The borated
fertilization had no influence on the metabolism of N (Flores
et al. 2017; Flores et al. 2018). Çelik et al. (2019) and
Pawlowski et al. (2019) claim that high doses of boron may
promote toxicity. One of the effects is the reduction in the pho-
tosynthetic rates of the plant, as observed in this experiment.

Reductions of photosynthesis are associated with boron stress
and enhanced activities of antioxidant enzymes. Catalase and
guaiacol peroxidase showed a typical stress response (Ou et al.
2019). The decrease in photosynthesis rates under stress condi-
tions can be attributed to injuries in the structure of thylakoids,
which affect electron transmission, decrease Fv/Fm (Rostami
et al. 2017), and may have changed leaf temperature, stomatal
conductance, and transpiration at the R8 stage.

The activation of stress-related genes and antioxidant en-
zymes could help to protect plants against excess of B (Aydin
et al. 2019). Some biological processes may be crucial in

Table 4 Boron content and boron
accumulation in shoots, roots, and
pods at the R5 (flowering) and R8
(harvest) stages, boron utilization
efficiency (BUE), and total boron
accumulation in function of boron
doses

Dose Shoots Shoots Roots Pods BUE

ppm mg kg−1 mg kg−1 mg kg−1 mg kg−1 g2 mg−1

Stage R5 R8 R8 R8 R8

Boron content

0 30.8 ± 6.76 22.3 ± 2.71 23.6 ± 1.07 19.4 ± 4.17 37.1 ± 4.46

1350 248.3 ± 52.76 34.1 ± 6.27 48.2 ± 3.50 13.3 ± 1.92 23.8 ± 3.58

2700 257.3 ± 48.57 26.5 ± 2.36 31.9 ± 5.05 16.5 ± 2.75 35.1 ± 4.19

4050 348.9 ± 50.98 49.7 ± 10.51 39.6 ± 2.73 18.1 ± 2.08 16.8 ± 0.74

5400 319.5 ± 22.91 34.1 ± 10.89 41.4 ± 4.33 21.3 ± 4.47 26.7 ± 3.42

F 9.57** 2.14ns 6.31** 0.99ns 5.72**

CV 33.48 72.34 20.34 34.43 24.97

Boron accumulation

0 177.7 ± 40.97 85.4 ± 14.29 27.4 ± 2.76 56.4 ± 14.26 169.2 ± 11.19

1350 1405 ± 337.91 109.0 ± 14.36 44.3 ± 4.27 31.9 ± 8.45 185.3 ± 22.52

2700 1432 ± 296.10 119.8 ± 18.58 49.2 ± 10.01 43.6 ± 10.09 212.6 ± 19.03

4050 1969 ± 304.35 177.4 ± 46.77 36.9 ± 9.92 37.0 ± 9.99 251.1 ± 54.35

5400 1720 ± 103.45 124.5 ± 48.07 56.3 ± 19.82 61.0 ± 19.82 241.8 ± 54.07

F 7.77** 1.28ns 4.30** 0.87ns 0.97ns

CV 36.92 48.56 25.15 57.78 33.76

**significant at 5% of probability by the Scott-Knott test; ns not significant at 5% probability by the Scott-Knott
test; CV coefficient of variation (%)

Fig. 3 Boron content (a) and
accumulation (b) of boron in
shoots at the R5 (flowering) stage
in snap bean plants in function of
the foliar application of increasing
doses of boron. *Significant at
5% of probability
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regulating B homeostasis in plants, such as antioxidant mech-
anism, energy metabolism, protein degradation, lipid biosyn-
thesis, and signaling pathways (Tombuloglu et al. 2017). In
addition, phylogenetics and expression are possibly involved
in the regulation of the toxicity tolerance mechanism of B,
relating to a MYB family of transcription factors
(Tombuloglu et al. 2013). Genes play crucial roles in stress
response in excess of B mainly related to stress response, cell
wall, plasma membrane, cytoskeleton construction, Ca2+/cal-
modulin system, phospholipase activity, and signal transduc-
tion (Tombuloglu et al. 2015).

The increase in foliar boron content in function of the doses
at the R5 stage corroborates Mantovani et al. (2013), Gomes
et al. (2017), and Silva et al. (2017), for whom the foliar
content of B increases linearly with the applied dose.
Pawlowski et al. (2019) observed that, in addition to increas-
ing leaf content, boron foliar application is capable of increas-
ing nutrient contents in roots and seeds.

Foliar fertilization with boron may induce the trans-
location of leaf boron to other parts of the plant, which

is a proof of the mobility of boron in the phloem of
some species (Gürel et al. 2019) or an attempt by the
plant to reduce the effects of phytotoxicity. Hegazi et al.
(2018) concluded that boron is mobile as reproductive
organs accumulated more boron than vegetative organs.
However, the increase in B concentrations tends to de-
crease its use efficiency, since with a greater amount of
nutrient, there is a slight increase or even a reduction in
the production of dry mass (Flores et al. 2018).

The fact that the boron doses do not result in total
nutrient accumulation in pod beans may be related to
the dilution effect that occurs along with plant growth,
reducing the boron content when comparing the R5 with
the R8 stage. The lack of mobility of boron in the
phloem is a related problem. It limits its location after
the foliar application mainly on old leaves, in which
they suffer senescence over time. With this, the trifolia
that emerged after the application were not influenced
by the foliar fertilization of B. Furthermore, the aggre-
gate B in its root prevents the translocation and mech-
anisms of internal tolerance use exclusion. As a result,
there is a decrease in the amount of B accumulation in
the whole plants (Rostami et al. 2017).

A similar result was found by Flores et al. (2018). The
borated application, despite increasing leaf contents, was not
able to influence the accumulation of the nutrient in the
shoots, roots, and total plant. Thus, the nutrient tends to be
retained in the place where it was applied, and due to its low
translocation, the nutrient distribution does not occur to all
organs at necessary amounts (Fioreze et al. 2018).

The absence of responses of the variables related to
the production in function of boron doses applied via
boron leaf corroborates several authors. Gomes et al.
(2017), Silva et al. (2017), Nakao et al. (2018), and
Santos et al. (2019) did not find significant productivity
differences in relation to the boron doses applied in
soybean crops. Lima et al. (2018), although they ob-
served an increase in the number of grains per pod,

Fig. 4 Boron content in the roots at the stage R8 (harvest) in snap bean
plants in function of foliar application of increasing doses of boron.
*Significant at 5% of probability

Table 5 Number of flowers (NF), number of pods (NP), mean pod length (MPL), mean pod diameter (MPD), pod green mass (PGM), pod dry mass
(PDM), and estimated yield at different doses of boron applied via leaf in snap beans

Dose NF NP MPL MPD PGM PDM Yield

ppm – – cm mm g g kg ha−1

0 3.50 ± 2.37 8.25 ± 1.03 8.17 ± 0.35 7.03 ± 0.23 2.51 ± 2.27 0.35 ± 0.26 1272.1 ± 118.32

1350 5.25 ± 1.99 6.50 ± 0.64 8.96 ± 0.46 6.79 ± 0.44 2.09 ± 1.57 0.34 ± 0.33 1000.8 ± 147.81

2700 5.00 ± 1.07 7.00 ± 0.82 9.45 ± 0.59 7.02 ± 0.42 2.73 ± 1.99 0.37 ± 0.23 1130.5 ± 102.00

4050 4.75 ± 3.45 6.00 ± 0.71 8.95 ± 1.05 6.36 ± 057 1.86 ± 3.51 0.32 ± 0.42 873.9 ± 185.55

5400 6.50 ± 2.44 6.00 ± 0.76 9.13 ± 0.43 7.35 ± 0.49 2.56 ± 1.03 0.49 ± 0.2 1210.17 ± 106.29

F 0,50ns 0.91ns 0.11ns 0.73ns 1.61ns 2.71ns 1.23ns

CV 60.55 29.07 15.99 13.08 23.85 21.7 40.14

**significant at 5% of probability by the Scott-Knott test; ns not significant at 5% probability by the Scott-Knott test; CV coefficient of variation (%)
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reported that the borated fertilization did not influence
the final yield in bean crops. Mantovani et al. (2013)
verified that the application of B in leaves at a single
dose is not able to increase peanut productivity regard-
less of the dose used, but the splitting of foliar fertili-
zation is capable of promoting yield increases.

The symptoms of phytotoxicity corroborate Rostami et al.
(2017). The burning started on the tip and the margin of young
leaves and moved to old leaves. Despite the appearance of
symptoms, especially at the R5 stage, boron toxicity in old
leaves cannot mean excess in the whole plant due to a limited
mobility of the nutrient in the phloem (Flores et al. 2017), a
fact confirmed by the absence of statistical differences in the
total boron accumulation in the plant at the R8 stage. Boron
toxicity symptoms occur in the marginal region of old leaves.
These portions become chlorotic or necrotic because bo-
ron is transported and accumulates along the transpira-
tion pathways (Ozturk et al. 2010). In general, the lower
boron doses were more effective than the higher doses,
with total chlorophyll, chlorophyll a and b, and total
soluble sugars significantly increased as the boron ap-
plication rate increased (Hegazi et al. 2018).

5 Conclusions

Foliar fertilization with boron does not influence snap bean
growth, but affects its physiology, mainly the internal CO2

concentration. Bean pods show a high accumulation of boron
at the R5 (flowering) stage depending on foliar application. B
promotes phytotoxicity at doses above 2700 ppm. The appli-
cation of boron via leaves does not promote the increase in
snap bean crop yield. Therefore, we do not recommend foliar
application of boron at the vegetative stage V3 (third mature
trifoliate) in snap bean crops even with a low boron content in
the soil.
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